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We present a new code aiming at giving a global and coherent approach for transport and
turbulence issues in the edge plasma of Tokamaks. The TOKAM-3D code solves 3D fluid drift
equations in full-torus geometry including both closed field lines and SOL physics. No scale
separation is assumed so that interactions between large scale flows and turbulence are
coherently treated. Moreover, the code can be run in transport regimes ranging from purely
anomalous diffusion to fully established turbulence. Specific numerical schemes have been
developed which can solve the model equations whether the presence of a limiter in the
plasma is taken into account or not. Example cases giving an overview of the field of appli-
cation of the code as well as verification results are also presented.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

Plasma–wall interaction [1] is one of the key issues to be addressed in ITER on the route towards making magnetic fusion
a viable energy source. In this field of research, turbulent cross-field transport bridges all the physics at hand. Among the key
issues that still require considerable effort are the radial width of the heat channel at the plasma boundary-as well as its
generalisation to density and momentum-the physics of the onset of the H-mode edge transport barrier, the physics that
governs the density limit and last but not least the operation of a divertor in a detached plasma regime. While the latter issue
clearly involves a lot of atomic physics, the three first issues appear to be strongly related to the underlying cross-field
transport.

Furthermore, it appears that this problem cannot be properly addressed if the key geometrical property of this region,
namely the existence of a domain of closed field lines, the edge plasma, and the neighbouring domain of open field lines,
referred to as the Scrape-Off Layer (SOL), are not addressed together and on the same footing. In that framework, the
. All rights reserved.

M/UKAEA Fusion Association, Culham Science Centre, Abingdon, Oxon OX14 3DB, UK. Tel.: +44 123546

Tamain).

http://dx.doi.org/10.1016/j.jcp.2009.09.031
mailto:patrick.tamain@ukaea.org.uk
http://www.sciencedirect.com/science/journal/00219991
http://www.elsevier.com/locate/jcp


362 P. Tamain et al. / Journal of Computational Physics 229 (2010) 361–378
existence of large scale flows generated by both the magnetic equilibrium and the plasma turbulence are also observed to
play an important role in this interface region [2]. Other experimental [3,4] and theoretical studies [5,6] suggest that turbu-
lence and transport properties are dramatically different in the core and in the SOL. The physics taking place at the interface
between these two layers, ie in the vicinity of the Last Closed FLux Surface (LCFS), is still under investigation. This issue is all
the more important as several fundamental open questions are linked to this area, such as the H-mode pedestal formation
[7,8] or the so-called spontaneous rotation of the core plasma [9].

A large palette of tools have been developed to address transport and turbulence issues in the edge plasma of Tokamaks.
These codes have helped clarifying our understanding of basic phenomena involved in edge physics. However, important
questions remain little explored due to limitations in the field of application of most of these tools: transport models
[10–13] require ad-hoc transport coefficients as an input although this approach is not necessarily valid [14,15]; 2D turbu-
lence models [16–18] cannot give an insight on the parallel dynamics of turbulence since they rely on the flute hypothesis on
which recent results shed doubt [19]; gradient-driven models [20] require hypotheses on plasma equilibrium profiles or cou-
pling with transport codes and do not reproduce the whole richness of multiscale dynamics [19]; exclusive closed field lines
[21] or SOL [16] codes are not able to take coherently into account the physics linked to the open-closed field lines transition
across the LCFS. . . Some of these limitations can be overcome by coupling several codes together [22–24], but a part of the
physics can be lost in the process.

In the last few years, a lot of effort has been put in the development of advanced tools to overcome those limitations
[25–27]. The aim of this paper is introduce a new edge code aiming at giving a global and coherent approach for edge trans-
port and turbulence issues. The TOKAM-3D code solves 3D electrostatic fluid drift equations in a full-torus geometry with no
scale separation and is able to cover both closed and open flux surfaces accross the LCFS. Furthermore, TOKAM-3D can be run
in a continuum of transport regimes ranging from purely diffusive transport to fully developed turbulence, by simply adding
an ad-hoc level of diffusive transport on top of turbulent transport equations. The physics currently included in the code re-
mains simpler than what is treated in more advanced tools like BOUT [25] or GEM [28], but the project is bound to be further
developed. Our purpose here is to present the physical model, its numerical implementation as well as first numerical results
illustrating validations and the range of applications.

The remainder of this paper is organized as follows. In the next section, the TOKAM-3D model is derived. Particular atten-
tion is given to the geometry and boundary conditions which are key features of the code. The numerical implementation of
the model is described in Section 3. Two slightly different schemes are presented, corresponding to two different versions of
the code. One treats only edge closed flux surfaces and takes advantage of the double periodicity of the geometry in that case,
while the other is able to cover both closed and open flux surfaces. Finally, Section 4 illustrates the field of application of the
code with simple simulations in the different regimes and geometries the code can handle. The presented cases also provide
basic verifications of the code’s behaviour and accuracy.
2. Physical model

2.1. 3D full-torus geometry in limiter configuration

We consider a plasma confined by a magnetic field in Tokamak geometry. Toroidal coordinates (r,h,u) and the associated
local orthonormal base ð~er ;~eh;~euÞ are used (Fig. 1). Toroidal limiter configuration has been chosen and flux surfaces are axi-
symmetric tori with concentric circular poloidal cross-sections. This choice greatly simplifies the treatment without sacrific-
ing the main features of edge physics (particle sources and sinks, electrostatic potential regulation via sheath currents, loss of
periodicity along the poloidal direction). Moreover, such geometrical assumptions are close to the actual situation on some
Tokamaks, like Tore Supra. Since neutrals are not modelled, the main limitation imposed by not considering an X-point
divertor geometry is the absence of the strong poloidally localized magnetic shear that both affects the spreading of turbu-
Fig. 1. Definition of toroidal coordinates.
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lence and flows across the LCFS and isolates the main SOL from the divertor legs [29]. X-point resistivity driven modes [30]
are also not considered.

Let R0 be the major radius on the magnetic axis and a be the minor radius at the LCFS. Fig. 2 illustrates the adopted geom-
etry. The computational domain is a toroidal ring delimited by flux surfaces r = rmin and r = rmax. The inner radius is located in
the closed flux surfaces region (rmin < a). Concerning the outer radius rmax, two situations must be distinguished:

� If rmax > a, the simulated region extends into the SOL characterized by the presence of the limiter which ‘‘opens” the field
lines and therefore breaks the periodicity. The limiter fills a poloidal angular section Dlim at the bottom of the machine
(h 2 [ � p/2 � Dlim/2; � p/2 + Dlim/2]) for r2]a,rmax].

� Otherwise, rmax = a and the simulated region is bounded by the LCFS.

This way, TOKAM-3D can be run in two different geometries corresponding to slightly different sets of boundary condi-
tions, depending on whether the simulated region crosses the LCFS and covers the SOL or not. We will talk about ‘‘edge” and
‘‘edge/SOL” versions of the code to designate each case.

The magnetic equilibrium is entirely defined by the specification of a safety factor profile q(r) and of an amplitude B(r,h) at
each poloidal location. Since the code currently addresses electrostatic turbulence, fluctuations of the magnetic field are ne-
glected and the magnetic configuration is constant. Assuming a large aspect ratio A = R0/a� 1, we can define the small
parameter �B ¼ r

qR0
� 1. The magnetic field is then given at the first order in �B by:
Fig. 2.
toroida
~B ¼ Bðr; hÞ~b � Bðr; hÞ
0
�B

1

0B@
1CA ð1Þ
with
Bðr; hÞ ¼ 1
1þ r

R0
cosh

ð2Þ
Note that the amplitude is equal to one on the magnetic axis r = 0 due to the chosen normalization convention.

2.2. Fluid approach

The will to derive our model without scale separation makes it necessary to adopt a flux-driven approach for turbulence,
either by volume sources or by fluxes at the boundary. To insure its coherency, simulations must be run for long times,
typically several confinement times sE, so that the system can reach a consistent equilibrium. The range of frequencies to
be treated is therefore:
s�1
E K x K cmax ð3Þ
where cmax is the growth rate of most unstable modes. Typical values in a medium-sized machine like Tore Supra are
s�1

E � 10 s�1 and cmax � 2 � 106 s�1. Concerning spatial scales, perpendicular gradient lengths k�1
? range from the smallest

scale of turbulence l\ to the major radius of the machine R0:
l? K k�1
? K R0 ð4Þ
Axisymmetric geometry used in the TOKAM-3D code. Left: poloidal cross-section; the colored area corresponds to the simulated region. Right: 3D
l view.
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with typical values of R0 � 3 m and l\ � qL � 5 � 10�4 m for a deuterium plasma in the vicinity of the LCFS (the ion gyro-ra-
dius qL appears as the natural lower scale for ion turbulence since smaller structures would not influence the ion dynamics
due to the gyro-averaging along their trajectory).

In such conditions, the spatial mesh necessary to describe with full resolution 10 cm in the radial direction around the
LCFS of a Tokamak of the size of Tore Supra (a = 0.7 m so q	edge ¼ qL=a � 1� 10�3) would require Nr � 27 radial points,
Nh � 212 poloidal points and Nu � 28 toroidal points, which makes a total of 227 � 108 degrees of freedom per field for the
only spatial dimensions. The use of field-aligned coordinates would substantially reduce the total resolution and is consid-
ered for future developments.

Although present computing means and their constant evolution allow the use of gyrokinetic modelling on such
meshes, we have adopted a less demanding fluid approach for our model. This choice can be justified for plasma condi-
tions in SOLs where high density and low temperature make the particle mean free path smaller than the parallel con-
nection length of field lines to the wall. However, the theoretical validity of the fluid approach is more questionable in
hot low density SOLs or inside the LCFS where the mean free path rises along with the temperature profile and non-Max-
wellian distribution functions can arise from radial mixing. However, fluid models, even out of their formal validity do-
main, allow one to get a qualitative insight on the main physical mechanisms underlying turbulence and transport
physics.

2.3. 3D fluid drift equations

TOKAM-3D solves two-fluid balance equations [31] under drift approximation, following the same approach as Ref. [32].
Four equations are derived, leading to evolution equations for four unknown dimensionless fields: the electronic density N,
the electrostatic potential U, the ion parallel velocity MT and the parallel current Jk. These equations are the following:
@tN þ Brk
NMT

B
� Brk

Jk
B
þ 1

B
½U;N
 ¼ �BN U;

1
B2

� �
þ B N;

1
B2

� �
þ ~r? � D?N

~r?N
� �

þ SN ð5Þ

@tMT þMTrkMT þ
1
B
½U;MT 
 ¼ �ð1þ ZÞrkN

N
þ ~r? � D?MT

~r?MT

� �
� SN

N
MT þ SM ð6Þ

@tW þMTrkW þ
1
B
½U;W 
 ¼ Z

B3

N
rk

Jk
B
þ ð1þ ZÞB

3

N
N;

1
B2

� �
þ ~r? � D?W

~r?W
� �

ð7Þ

gkNJk ¼ rkN � NrkU ð8Þ
where the vorticity W is defined by
W ¼ r2
?Uþ

r2
? ln N

Z
ð9Þ
Isothermal closure is presently assumed for electronic and ionic temperatures, Te = Ti = T0 = 1 (normalized value). Hence,
this first version of the code does not integrate mechanisms like sheath-driven electron temperature-gradient modes or tem-
perature driven flows. Energy balance equations are already planned to be added in future versions of the code.

All quantities are normalized with respect to the ions gyro-motion. The magnetic field amplitude on the magnetic axis
B(r = 0) is chosen as the reference magnetic field amplitude B0 as well as the temperature of the isothermal plasma T0. This
way, one can define a gyro-frequency and a gyro-radius:
xci ¼
eB0

mi
qL ¼

ffiffiffiffiffiffiffiffiffiffiffi
miT0
p

eB0
ð10Þ
which are used to normalize the time and lengths. The electrostatic potential U is normalized to T0/e while the density is
normalized to an arbitrary reference N0. All the other normalization conventions are derived from the previous ones.

Eqs. (5)–(8) share the same structure. They express the temporal variation of any local quantity X as the sum of local driv-
ing source terms and of the divergence of its total flux ~CX which can be decomposed as the combination of a convective flux
and a diffusive one:
~CX ¼ X~V �DX
~rX ð11Þ
The parallel component of the advection velocity ~V �~b is defined by MT for the ions and by Jk for the electrons. Under the drift
approximation, the perpendicular components are described in terms of drifts according to a development in �x = x/xci� 1
(xci being the ion gyro-frequency) of the perpendicular momentum balance equation:
~V ¼ Vk~bþ ~VE þ ~VH þ ~Vp ð12Þ
The electric drift velocity ~VE ¼ ð~B ^ ~rUÞ=B2 and the diamagnetic drift velocity ~VH ¼ ð~B ^ ~rðnsTsÞÞ=ðqsnsB
2Þ (where ns,Ts and qs

are the density, the temperature and the charge of the considered particles species, ions or electrons in our case) are taken into
account for both ions and electrons, while the second order polarization velocity ~Vp ¼ ms

qsB2
~B ^ ½@t þ ðVk~bþ ~VEÞ:~r
ð~VE þ ~VHÞ,

linked to inertia effects, is kept only for ions when it appears under a divergence operator (as in [32]).
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The electron balance Eq. 5 includes the divergence of the parallel, ExB drift and diamagnetic fluxes. The latter gives a cur-
vature term representing the effect of the particle curvature drift velocity. The notation [X,Y] stands for the Poisson bracket
operator:
½X;Y 
 ¼ ~rX ^ ~rY
� �

�~b ð13Þ
while rk ¼~b:~r is the projection of the gradient along the local direction of the magnetic field. A volumic source term SN is
also included to drive the particle flux.

Eq. 6 is the parallel momentum balance in which advection by ExB drift and parallel velocity is taken into account. It has
been combined with the electron balance equation to obtain an equation of evolution for the normalized parallel velocity MT.
No advection by the diamagnetic drift velocity appears due to its cancellation with finite gyro-radius terms from the Bragin-
skii pressure tensor (classical result known as diamagnetic cancellation [33]). The driving term is the parallel pressure gra-
dient (1 + Z)rklnN, with Z the charge of the considered ion species. Note that, due to the chosen normalization, the
dimensionless ionic parallel velocity MT is linked to the parallel Mach number M by:
MT ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Te þ Ti

T0

s
�M ¼

ffiffiffi
2
p
�M ð14Þ
SM is a momentum source to account for external momentum input (via neutral beam injection for example).
The vorticity evolution Eq. 7 determines the evolution of the electrostatic potential U. It is simply a charge balance under

quasi-neutrality assumption ~r �~j ¼ 0, with~j ¼ Jk~bþ Nð~Vi
H
� ~Ve

H
Þ þ N~Vp. The vorticity terms (left hand side) arise from the

divergence of the polarization current, while the diamagnetic current is responsible for the curvature term.
Finally, Eq. 8 is the electrons motion equation along parallel direction neglecting electronic inertia. It leads to a general-

ized Ohm’s law linking the parallel current Jk to the parallel gradients of density and potential. gk is the normalized parallel
collisional resistivity of the plasma. Neglecting the electron inertia limits the scope of the code to frequencies lower than the
electron collision frequency, equal to a few micro-seconds in typical SOL conditions.

Diffusion terms account for collisional and viscous transport and help to damp small turbulent scales that could be lethal
for the code. The damping of scales smaller than the ion Larmor radius can be justified by physics considerations on the gyro-
averaging during the ions motion since we only consider frequencies x�xci. Diffusion terms can also be set to larger values
to account for an arbitrary level of diffusive transport, such as neoclassical or anomalous transport. Their parallel component
is neglected compared with parallel convection so that we keep only perpendicular diffusion. They are characterized by con-
stant but space-dependent diffusion coefficients D\N/M/W(r,h). Even though they are scalar by default, they can be locally dif-
ferent along the radial and poloidal directions in buffer regions (see Section 2.4).

2.4. Boundary conditions

The two versions of the code treat two different geometries and have therefore two different sets of boundary conditions.
We shall now detail them for each version.

2.4.1. Boundary conditions in the edge version
In the edge version, flux surfaces are closed so that all fields are periodic along the poloidal and toroidal directions (h,u):
8r; h;u Xðr; hþ 2p;uÞ ¼ Xðr; h;uÞ and Xðr; h;uþ 2pÞ ¼ Xðr; h;uÞ ð15Þ
X standing for any considered field.
Radial boundary conditions aim mainly at controlling entering and outgoing fluxes and currents so as to insure a coherent

flux-driving of the system by the only volumic sources SN/M. At the inner flux surface (r = rmin), we impose:
@rNðrminÞ ¼ 0; MðrminÞ ¼ Mcore

@rUðrminÞ ¼ 0; @rWðrminÞ ¼ 0
ð16Þ
where Mcore is an arbitrary imposed value for the parallel velocity in the core. Unless specified, the default value is Mcore = 0.
Note that the choice of driving the system by volumic sources rather than incoming boundary fluxes is arbitrary but was
made to offer more flexibility in the driving particle flux distribution.

The situation is slightly different at the outer flux surface (r = rmax). Indeed, the absence of particle sink in the system
makes it necessary to allow an outgoing flux so as to avoid an infinite increase of the density. Therefore, we impose a nor-
malized density equal to one (the reference density N0 is then defined as the one at the external edge of the domain) instead
of a zero gradient. Concerning the electrostatic potential, the absence of a limiter leads to the absence of a reference potential
(role played by the sheath floating potential K in the edge version) so that it is necessary to impose an arbitrary value for the
potential at the outer boundary. Finally, the following boundary conditions are specified:
Nðrmax ¼ aÞ ¼ 1; Mðrmax ¼ aÞ ¼ Mwall

Uðrmax ¼ aÞ ¼ Uwall; @rWðrmax ¼ aÞ ¼ 0
ð17Þ
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Mwall characterizing an arbitrary rotation of the outer plasma. By default, Uwall is chosen equal to the sheath floating

potential K ¼ � 1
2 ln 0:5 me

mi
1þ Te

Ti

� �h i
¼ � 1

2 ln me
mi

so that the potential field’s amplitude is comparable with the one found in

the edge version of the code.
In order to insure the numerical stability of previous boundary conditions, it is necessary to damp fluctuations in the

vicinity of radial boundaries. Following what was done in Ref. [21], buffer regions are added close to the boundary flux sur-
faces (within 5 ion ggyro-radii typically), where the parallel resistivity gk is strongly reduced and diffusion coefficients D\N/

M/W increased. The linear analysis of the TOKAM-3D model demonstrates that this parameter modification tends to stabilize
the system. This way, fluctuations are damped and diffusion dominates transport processes close to the boundaries, there-
fore creating a smoothed boundary condition. Buffer regions are also used to make sure that no undesirable flux flows
through the boundaries (the code being flux-driven, one wants to control what the actual drive is). To do so, the increase
of diffusion coefficients is chosen stronger for diffusion along the poloidal direction than along the radial direction so that
buffer regions prevent the development of poloidal gradients which would lead to undesirable drift through the boundaries
of the system.

2.4.2. Boundary conditions in the edge/SOL version
Fig. 3 gives an overview of locations where boundary conditions are specified in the edge/SOL version. The difference with

the edge version is linked to the presence of the limiter which requires specific boundary conditions and adds a particle sink
as well as a reference potential. Buffer regions, also shown in Fig. 3, extend around the limiter.

The toroidal direction u is still periodic in the whole domain:
Fig. 3.
slab).
8r; h;u Xðr; h;uþ 2pÞ ¼ Xðr; h;uÞ ð18Þ
but it is no more the case for the poloidal direction, the periodicity being lost due to the limiter in the SOL. This way, poloidal
periodicity is stated only in the core:
8r 6 a; h;u Xðr; hþ 2p;uÞ ¼ Xðr; h;uÞ ð19Þ
In the SOL, Bohm’s boundary conditions [34–36] are classically used to model the effect of the sheath at the interface be-
tween the limiter and the plasma. In our geometry, field lines intersect the limiter with a non normal pitch angle:
ainc �
r

qR0
� �B ð20Þ
Recalling that u\� uk, it is nevertheless possible to neglect the contribution of drift velocities in sheath boundary conditions,
provided that we do not consider too grazing incidences (ainc > 3 � 4�). This way, we impose the following boundary condi-
tions at the side plates of the limiter:
M a < r < rmax; h ¼ �p=2 Dlim=2ð Þ ¼ �
ffiffiffi
2
p

Jk a < r < rmax; h ¼ �p=2 Dlim=2ð Þ ¼ �N
ffiffiffi
2
p

1� expðK�UÞð Þ
ð21Þ
where K is the sheath floating potential. The presence of the ‘‘
ffiffiffi
2
p

” is due to the normalization chosen for the parallel velocity.
The condition on the parallel current, coupled to the generalized Ohm’s law 8, gives a condition on the parallel derivative of
the potential:
rkU ¼ rk ln N  gkN
ffiffiffi
2
p

1� expðK�UÞð Þ ð22Þ
Localization of boundary conditions, buffer regions and of the core-incoming particle source in the edge/SOL version of TOKAM-3D (ploidal section,
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It is possible to demonstrate that this non-linear condition is sufficient to determine the potential [37]. We also add a con-
dition on vorticity so as to insure that no current linked to the diffusive term in the charge conservation Eq. (7) leaves or
enters the plasma:
@hW a < r < rmax; h ¼ �p=2 Dlim=2ð Þ ¼ 0 ð23Þ
No particular condition is specified for density.
Boundary conditions at the inner flux surface are the same as in the core version Eq. (16). Contrary to the edge version

however, the same conditions can be imposed at the outer flux surface since the potential U already has a reference value
with the sheath floating potential K and that the density is regulated by the parallel particle outflow on the limiter:
@rNðrmaxÞ ¼ 0; MðrmaxÞ ¼ Mwall

@rUðrmaxÞ ¼ 0; @rWðrmaxÞ ¼ 0
ð24Þ
The only difference is that Mwall is not arbitrarily imposed but is the poloidal distribution corresponding to the analytical
solution of the steady-state equilibrium of an isothermal 1D SOL with homogeneous source [34].

Finally, radial boundary conditions are required at r = a at the limiter front plate. In the chosen geometry, field lines are
tangential to the wall just in front of the limiter. Bohm boundary conditions are not valid anymore in that case and no clear
choice stands out of the literature. In real-world limiter machines, the area of the limiter where field lines are almost tan-
gential (ainc< a few degrees) is very limited and is not expected to have an important influence on the overall behaviour of the
plasma. This way, we end-up having to choose boundary conditions for a purely numerical purpose, with the requirement of
not constraining the system too much but also of numerical stability. Our treatment relies on a linear interpolation of fields
along the poloidal direction between both sides of the limiter. It is detailed in the next section devoted to numerical aspects.

The numerical stability at the transition between open and closed field lines is also insured by the buffer region which
extends around the limiter. This stabilization has a price however: the presence of the buffer zone masks physical processes
that might take place around the limiter. It is particularly the case for Kelvin–Helmholtz instability that may be expected due
to the strong shear on parallel velocity at the LCFS [38]. However, we assume that the presence of the buffer zone influences
the system only in its close vicinity, so that the impact of boundary conditions imposed by the limiter on the whole system is
correctly modelled.
3. Numerical method

Due to the differences in the geometry and the boundary conditions, the two versions of the previous model do not re-
quire the same numerical treatment. In particular, the edge version can take advantage of the periodicity of the poloidal
direction while the edge/SOL version has to deal with the presence of the limiter and the discontinuity of boundary condi-
tions at the LCFS. In this section, we first detail the numerical treatment adopted for the edge/SOL version before precising
the particularities of the edge version.

3.1. Edge/SOL version

3.1.1. Semi-spectral discretization
The spatial discretization of Eqs. (5)–(8) is performed on the basis of a structured mesh along toroidal coordinates. A

semi-spectral scheme is used. Indeed, the toroidal periodicity allows to make use of a treatment in Fourier space along that
direction for linear terms:
Xðr; h;uÞ ¼
XNu=2

nu¼�Nu=2

bXnu ðr; hÞ expðinuuÞ ð25Þ
Nu being the number of mesh points in the toroidal direction. However, this spectral approach is not possible along the radial
and poloidal directions. Along those directions, fourth order finite differences are used. If D is the spatial step along the con-
sidered direction, the centered discretizations for first and second derivatives at the jth point are:
f 0j ¼
2

3D
fjþ1 � fj�1 �

fjþ2 � fj�2

8

� �
þ oðD4Þ

f 00j ¼
1

12D2 �30f j þ 16ðfjþ1 þ fj�1Þ � fjþ2 � fj�2
� �

þ oðD4Þ
ð26Þ
The choice of a central differencing scheme rather than an up-winding scheme was made to limit the amount of numer-
ical diffusivity and leave the role of damping small scale structures to well-defined and controlled diffusion terms.

3.1.2. Time-splitting
Three kinds of terms can be distinguished in the system (5)–(8) from the numerical point of view:
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(1) Perpendicular diffusion terms:
@tN ¼ � � � þ ~r? � D?N
~r?N

� �
@tM ¼ � � � þ ~r? � D?M

~r?M
� �

@tW ¼ � � � þ ~r? � D?W
~r?W

� � ð27Þ

These terms are linear and must be treated implicitly because of the CFL linear stability condition [39] which for large
anomalous diffusion coefficients would impose the use of unacceptable small time-steps with an explicit treatment.
(2) Terms linked to the parallel current:
@tN ¼ � � � þ Brk
Jk
B

@tW ¼ � � � þ Z
B3

N
rk

Jk
B

W ¼ r2
?Uþ

r2
? ln N

Z

Jk ¼
1
gk
rkðln N �UÞ

ð28Þ

The parallel resistivity has an extremely low value in typical edge plasma conditions, gk � 10�6 � 10�5 (normalized
value). This way, the divergence of the parallel current appears in equations as a diffusion term on (lnN �U) associ-
ated with a dimensionless diffusion coefficient 1/gk whose dynamics (electronic) is much faster than the ionic times
we are interested in. An implicit approach is therefore compulsory.
(3) other terms:
@tN ¼ . . .� Brk
NM

B
� 1

B
½U;N
 � BN U;

1
B2

� �
þ B N;

1
B2

� �
þ SN

@tM ¼ . . .�MrkM �
1
B
½U;M
 � ð1þ ZÞrkN

N
� SN

N
M þ SM

@tW ¼ . . .�MrkW �
1
B
½U;W 
 þ ð1þ ZÞB

3

N
N;

1
B2

� � ð29Þ
They are mainly non-linear advection terms and source terms. Their dynamics is on an ionic time scale which allows an ex-
plicit treatment.

On the basis of this term classification, time-stepping is performed thanks to a time-splitting similar to the one used in
Ref. [40]. Let Xn�1 and Xn be the values of fields at the two last time-steps and dt = tn � tn�1 be the time step width. The next
iteration of the fields Xn+1 is obtained following three sub-steps:

(1) Implicit advancement of perpendicular diffusion terms applied on fields at time (n � 1) for a time width dt:
XH � Xn�1

dt
¼ ~r? � D?X

~r?XH

� �
ð30Þ
(2) Simultaneous advancement of parallel current terms, advection terms and source terms with a semi-implicit leap-frog
scheme:
XHH � XH

2dt
¼ parallel current terms½ 
HH þ other terms½ 
n ð31Þ
(3) Implicit advancement of perpendicular diffusion terms applied on fields Xww for a time width dt:
Xnþ1 � XHH

dt
¼ ~r? � D?X

~r?Xnþ1
� �

ð32Þ
Note that since the leap-frog scheme is unstable due to the decoupling existing between odd and even time-steps, ‘‘syn-
chronization” between consecutive time-steps by taking their mean value is regularly necessary:
1
2

Xn þ Xnþ1
� �

) Xnþ1 ð33Þ
A frequency of one synchronization every 30 steps has been found to be a good compromise between stability and pre-
cision, even though that may depend on the considered case and no systematic study was carried out. We will now detail
each of the steps of the time-splitting.
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3.1.3. Perpendicular diffusion terms
Perpendicular diffusion terms 27 take the shape of a 2D Laplacian:
~r? � D?X
~r?X

� �
¼ Dr

?X@r2 X þ @rD
r
?X@rX þ

1
r

Dr
?X@rX þ

cos h
R0 þ r cos h

Dr
?X@rX þ Dh

?X
@h2 X

r2 þ
1
r2 @hDh

?X@hX

� sin h
R0 þ r cos h

Dh
?X
@hX

r
ð34Þ
where Dr
?X and Dh

?X are the diffusion coefficients for the field X along the radial and poloidal directions (Dr
?X – Dh

?X only in
radial buffer regions).

They are advanced with a fully implicit scheme:
X} � X
dt

¼ ~r? � D?X
~r?X}

� �
ð35Þ
X} and X referring, respectively to the X field value after and before the application of the diffusion operator on a dt
time step. The matrix of the corresponding finite differences linear system is a sparse band (NrNh � NrNh) matrix with
4Nh bandwidth. This system is solved by LU decomposition [39] using the LAPACK library [41]. Since diffusion coefficients
are constant and do not depend on the toroidal location, the matrix does not change either and the decomposition is per-
formed only once at the beginning of the execution. The obtained triangular matrices are stored and used at each time
step to solve the system.

3.1.4. Parallel current terms
Terms linked to the parallel current 28 constitute the main numerical difficulty of the model. Indeed, they have extremely

fast dynamics, which requires an implicit treatment, and couple the three spatial dimensions through the charge balance
equation.

In order to avoid a direct inversion of a 3D system, it is possible to modify slightly the system 28 by averaging the two 1/N
terms along the toroidal direction:
@t ln N ¼ B
hNiu

rk
1
gk
rk ln N �Uð Þ

B

@t r2
?Uþr2

? ln N=Z
� �

¼ Z
B3

hNiu
rk

1
gk
rkðln N �UÞ

B

ð36Þ
where hNiu is the mean value of the density along the toroidal direction. We also assume that gk is homogeneous along the
toroidal direction. This simplification removes potential mode coupling in the toroidal direction, but we assume that such
coupling is not a key player of the physics of the system.

If we treat explicitly the 1/hNiu terms, the system 36 is now linear in lnN and U with respect to the toroidal direction,
which makes it possible to project it in Fourier space following 25. This way, the advancement of parallel current terms
is splitted into the resolution of Nu/2 + 1 independent 2D (2NrNh � 2NrNh) systems along radial and poloidal directions,
one for each toroidal wave number nu:
dln NHH

nu
� dln NH

nu

dt
¼ 1
hNHiugk

r2
k �
rk
B

� � dln NHH

nu
� bUHH

nu

� �
r2
?
bUHH

nu
þ dln NHH

nu
=Z

� �
�r2

?
bUH

nu
þ dln NH

nu
=Z

� �
dt

¼ ZB2

hNHiugk
r2
k �
rk
B

� � dln NHH

nu
� bUHH

nu

� �
ð37Þ
with rk = 1/R0(inu � @h/q). Each of these systems is solved by LU decomposition using the direct sparse solver MUMPS
[42,43] rather than LAPACK. Indeed, although these matrices have the same structure as the ones obtained from the discret-
ization of diffusion terms (sparse band), they couple several fields (the density N, the potential U and eventually the tem-
peratures Te and Ti in future versions) hence leading to unacceptably larger memory requirements if a dense solver were
used. Thus, MUMPS allows for an optimization of the memory usage. Since the matrix evolves with the time step and the
toroidal wave number, decomposition and resolution must be performed at each step but the analysis of the matrix structure
(the pattern of non-zero elements) is called once for all at the beginning of the execution.

3.1.5. Advection and source terms
These terms can be treated explicitly and are included as second-hand side in the system on parallel current terms. They

are first computed in real space by finite differences before being projected in Fourier space using the FFTW library [44].
Once the system has been solved, anti-aliasing filtering is applied before returning to real space.
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3.1.6. Boundary conditions around the limiter
Special care has been given to boundary conditions around the limiter. In particular, the treatment of radial boundary

conditions at r = a in the poloidal angular sector of the limiter is of primary importance for the stability of the scheme.
Fig. 4 illustrates the discretization strategy we have adopted around the limiter. In the open field lines region (r > a), unc-

entered finite differences are used when necessary (at surfaces 1 and 2 in Fig. 4) to compute derivatives along the poloidal
direction. For surface 1, the following developments are used:
Fig. 4.
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ð38Þ
indexes 1 and 2 referring to the two mesh points that are the closest to the limiter along the poloidal direction, for given
radial and toroidal positions. The symmetric developments are used on the other side (surface 2). The use of the same kind
of uncentered discretization for radial derivatives in the closed field lines region in front of the limiter (surface 3 in Fig. 4)
leads to the appearance of spurious oscillations responsible for the crash of the time-stepping. As stated in section 2.4.2, the
choice of boundary conditions at that location can be driven solely by numerical considerations. We have therefore solved
the problem by using centered discretizations for the radial derivatives, based on the use of virtual points inside the limiter
which are computed by linear interpolation along the poloidal direction between both lateral plates of the limiter. Fig. 4
illustrates the principle. This insures a smooth correlation between the fields in front of the limiter and their values on both
sides of it just out of the LCFS, thus solving stability issues.

Let us now detail further the treatment of the current boundary condition at the limiter plates in the SOL. This boundary
condition, expressed in 22 as a condition on the parallel gradient of the electrostatic potential U, is strongly non-linear due to
the presence of the exponential. A purely explicit treatment of this exponential is not possible since an implicit reference to
the K �U term is necessary to remove the undetermination on the amplitude of the potential in the whole domain. So as to
allow an implicit approach, we have linearized Eq. 22 under the assumption that the fields evolve slowly compared to the
time step:
1
gk
rk ln Nnþ1 �Unþ1
� �

¼ Nn
ffiffiffi
2
p

1� exp K�Unð Þð Þ  hNn
ffiffiffi
2
p

exp K�Unð Þiu Unþ1 �Un
� �

ð39Þ
the exponents n and n + 1 standing respectively for the previous time step and the next one. Note that the coefficient of the
implicit right-hand side term has been averaged along the toroidal direction to comply with the treatment in Fourier space.
This expansion remains valid as long as Un+1 �Un/Te� 1 and eU=Te � 1; eU is the toroidally fluctuating component of U.
3.1.7. Parallelization
A rough parallelization of the code has been implemented for the most time-consuming parts of the above scheme, ie the

implicit treatment of the terms linked to the parallel current and the inversion of the diffusion terms.
Diffusion terms act only along perpendicular directions. It is therefore possible to treat independently each poloidal plane

of our mesh and to split them on different processes.
Adopted discretization for the computation of derivatives around the limiter. Filled squares indicate the points where derivatives are computed;
circles they are linked to indicate the discretization points used for the computations of the derivative. Filled triangles are virtual points inside the
They are computed by linear interpolation along the poloidal direction between the two points located on each side of the limiter and represented
ty triangles.
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As for parallel current terms, they are naturally split in the Fourier space, which allows distributing the Nu/2 + 1 indepen-
dent Fourier modes among Ng grapes of Np/g processes. Each grape manages a subset of toroidal modes using the parallel
inversion tool provided by MUMPS, before broadcasting the updated value of the unknown fields to the other processes.

Communication management is done with MPI. Up to now, the code has never been run on massively parallel architec-
tures and parallel execution has been limited to a maximum number of 8 processes. No systematic analysis of the perfor-
mance of this parallelization has been carried out. We can however quote that a case with Ng = 4 grapes of Np/g = 1
processor and with Nu = 64 runs around 3.2 times faster than the equivalent mono-processor case.
3.2. Edge version

The scheme applied in the edge version of the code differs slightly from the one described here-above. Taking advantage
of the periodicity in h, projection in Fourier space can be extended to the poloidal direction:
Xðr; h;uÞ ¼
X

mh ;nu

bXmh ;nu ðrÞ expðimhhþ inuuÞ ð40Þ
provided we consider several supplementary simplifying assumptions.
Concerning diffusion terms, diffusion coefficients are required to depend only on the radial position r and the h depen-

dence of the Laplacian operator also has to be neglected:
~r?: D?X
~r?X

� �
¼ Dr

?X@r2 X þ @rD
r
?X@rX þ

1
r

Dr
?X@rX þ Dh

?X
@h2 X

r2 ð41Þ
Under these assumptions, each Fourier mode is decoupled from the others and the treatment of diffusion terms is reduced
to the inversion of Nu � (Nh/2 + 1) band matrices representing 1D complex Laplacians.

In a same way, the use of Fourier projection along the poloidal direction for parallel current terms simplifies the numer-
ical problem only if poloidal modes can be treated independently. This requires a further simplification of the system 37:
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ð42Þ
the average values now being taken along flux surfaces, not only the toroidal direction. gk should also depend only on r. In
such conditions, the implicit advancement consists in inverting / Nh � Nu dense band systems of size / Nr (instead of / Nu

sparse band systems of size / Nr � nh) which leads to a substantial acceleration of the treatment. The density of the band
matrices allows using LAPACK instead of MUMPS for the LU decomposition.

The advancement scheme itself is also slightly different from the edge/SOL version, taking advantage of the fact that the
inversion of the parallel current terms’ operators is now far less time-consuming. The time-splitting is centered around a
predictor–corrector scheme instead of a leap-frog scheme, so that the advancement procedure to the (n + 1)th time step
is the following:

(1) Implicit advancement of perpendicular diffusion terms applied on fields at time n for a time width dt/2:
XH � Xn

dt=2
¼ ~r? � D?X

~r?XH

� �
ð43Þ
(2) Simultaneous advancement of parallel current terms, advection terms and source terms with a semi-implicit predic-
tor–corrector scheme, with a predictor step:
X. � XH

dt
¼ ½parallel current terms
. þ ½other terms
H ð44Þ

followed by a corrector one:

XHH � XH

dt
¼ ½parallel current terms
HH þ ½other terms
. ð45Þ
(3) Implicit advancement of perpendicular diffusion terms applied on fields Xww for a time width dt/2:
Xnþ1 � XHH

dt
¼ ~r? � D?X

~r?Xnþ1
� �

ð46Þ
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Such a choice makes it necessary to advance parallel current terms twice per time step (compared to once with the leap-
frog), but does not require anymore the use of arbitrary synchronizations between odd and even time-steps to insure its
stability.
3.3. Performance

A very brief study of performances has been performed. The evolution of the computation time for each time step as a
function of the number of mesh points is given in Fig. 5 for the both versions. These curves show as expected a quasi-linear
evolution with the number of points in each direction, except for the Nh dependence in the edge/SOL version. We can notice
however that this dependence is slightly weaker than N2

h whereas we might expect an evolution in N3
h due to the parallel

current terms. Indeed, the size of the corresponding band matrix and its bandwidth are both proportional to Nh, so that a
dense band LU decomposition/inversion would evolve in size� bandwidth2 / N3

h . This shows the efficiency of the use of
MUMPS instead of LAPACK for the treatment of these terms. Note that we get a better (linear) dependence in Nh in the Edge
version because the matrices obtained in that case are dense band matrices whose bandwidth does not depend on Nh.
4. Verification and physical cases

We will now illustrate the usage of TOKAM-3D. In the following section, we present typical physical applications of both
versions of the code as well as some verifications performed on the basis of these cases.
4.1. Parallel transport

Let us start with a verification linked to the choice of a structured mesh along (h,u). Indeed, the physics of transport in a
magnetized plasma is strongly anisotropic, the magnetic field’s direction playing a specific role in transport processes. In the
frame of our approach however, operators acting along the parallel direction appear as combinations of operators along h
and u and, even though the choice of a structured mesh in (h,u) facilitates the numerical treatment of the toroidal geometry,
the correct description of the parallel dynamics is not insured.

In order to address this issue, we have run a simulation solving only the minimal set of equations describing parallel
transport:
Fig. 5.
SOL ver
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rkN
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The considered case consisted in studying the evolution of an homogeneous plasma seeded with a density blob localized
along h and u. Fig. 6 shows the density at t = 0, t = 6000/xci and t = 2.105/xci for two flux surfaces with different safety factors
q. The observed behaviour is conform to what suggests the analytical resolution of such a system [45]: the density peak splits
into two symmetric peaks propagating in opposite direction along the field line with quasi-acoustic velocities. After a few
transit times, the blobs can end-up at the same position and interact as can be seen in the t = 2 � 105/xci window of the
Computation time per time-step as a function of the number of mesh points along each direction for the edge version of TOKAM-3D (a) and the edge/
sion (b). The default values for the mesh size (when not varied as the plotting parameter) are: Nr = 80, Nh = 256 and Nu = 64 for the edge version and
Nh = 80 and Nu = 20 for the edge/SOL version.



Fig. 6. Temporal evolution of an initial density blob at 2 different radii corresponding to 2 different values of the safety factor q: top q = 3, bottom q = 5.3.
The left picture shows a zoom on the unaligned structured mesh compared to the direction of a field line.

Fig. 7. Temporal evolution of the relative error on particle balance during the parallel advection of the blobs in the case shown in Fig. 6.
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q = 5.3 flux surface. As shown in Fig. 7, the relative error on particle balance during the parallel advection of the blobs re-
mains lower than 0.5% over several ion parallel transit times (of the order of 2.104/xci in that case). These results demon-
strate that the choice of a non-aligned structured mesh does not prevent a correct treatment of the parallel dynamics.
4.2. Edge/SOL version in laminar regime

We now return to the full TOKAM-3D model and consider a case run with the following parameters:
Nr ¼ 80 NrSOL ¼ 40 Nh ¼ 160 N/ ¼ 40
rmin ¼ 50 a ¼ 100 R0=a ¼ 3:4 Dlim ¼ p=8

gk ¼ 1� 10�6 D?N ¼ D?M ¼ D?W ¼ 6� 10�1

ð49Þ
the normalization convention being the one stated in section 2.3 (for example, the diffusion coefficients are normalized to
q2

L :xci so that anomalous transport coefficients are of the order of 1 and classical transport coefficients are of the order of
10�2). Since the number of radial grid points in the SOL NrSOL is not equal to zero, it is the edge/SOL version of the code which
is used, with rmax ¼ aþ NrSOL

Nr�NrSOL�1 ða� rminÞ � 151. The volumic source term SN takes the form of a radial gaussian and is lo-
cated in the inner buffer region so as to account for an incoming particle flux from the core.

The values chosen for diffusion coefficients correspond to anomalous transport coefficients. Along with the average value
imposed for the incoming particle source, we expect the simulated plasma to be stable with respect to small scale turbu-
lence, which can also be confirmed by a linear analysis of the system (5)–(8). However, large scale structures linked to
the existence of global drifts, curvature and the presence of the limiter are still modelled. In such a regime, that we will refer
to as ‘‘laminar”, TOKAM-3D is used simply as a 3D global transport code.

Fig. 8 shows the obtained radial density profile. As stated above, the plasma remains stable and the steady-state equilib-
rium, which is reached in a few confinement times, is toroidally symmetric. Currents in the plasma and at the sheaths also



Fig. 8. Steady-state radial profiles for the density N (left) and electrostatic potential U (right). The equilibrium is toroidally symmetric.
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evolve towards an equilibrium which determines the spatial distribution of the electrostatic potential U. This way, a poten-
tial profile develops in the plasma (Fig. 8), fully consistently driven by boundary conditions on currents and the charge bal-
ance Eq. 7, and is responsible for a global ExB drift along the poloidal direction.

An interesting verification of the right behaviour of the code can be obtained when looking at the poloidal equilibrium of
the electrostatic potential U and of the parallel current Jk. In the closed field lines region, the non-zero divergence of the dia-
magnetic current is responsible for a vertical charge separation in the presence of the radial density gradient. The resulting
mh = 1 mode on the potential has the following expression
Fig. 9.
with th
U ¼ gq2R2
0@rN sin h ð50Þ
and drives equatorial parallel currents, the so-called Pfirsh–Schlüter currents, which counterbalance the charge separation
and have the following dependence. These features can be observed in our simulation results (Fig. 9) and show excellent
agreement with the analytically expected phase and amplitude. In the open field lines region, the poloidal dependence of
the potential is mainly determined by sheath boundary conditions as well as the density distribution. In particular, the poloi-
dal potential profile drops in the vicinity of the limiter along with the density. This behaviour can also be observed in Fig. 9.
The analytically expected parallel equilibrium (using simulated perpendicular terms as parameters) is also shown and agrees
extremely well.
4.3. Edge version in turbulent regime

If we progressively decrease the diffusion coefficients but keep the incoming particle flux constant, the radial density gra-
dient, which is a destabilizing factor, steepens while the stabilizing effect of the diffusive damping rate vanishes. Perpendic-
(a) equilibrium poloidal profiles of the electrostatic potential in the SOL and in the closed field lines region in laminar regime, showing comparison
e analytically calculated equilibrium; (b) poloidal section of the steady-state parallel current distribution exhibiting Pfirsch–Schlüter currents.
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ular transport then becomes dominated by small scale fluctuations. When used in this regime, TOKAM-3D is a global flux-
driven turbulent code without scale separation.

To illustrate this aspect of the code, let us consider a simulation run with the following parameters:
Fig. 10.
and dif
r � rmin
Nr ¼ 80 NrSOL ¼ 0 Nh ¼ 250 N/ ¼ 64
rmin ¼ 120 a ¼ 200 R0=a ¼ 3:4

gk ¼ 3� 10�5 D?N ¼ D?M ¼ D?W ¼ 2� 10�2

ð51Þ
The edge version of the code is used since no mesh point is specified in the SOL (NrSOL).
Fig. 10 shows a poloidal section of the density once the equilibrium has been reached. This equilibrium is not static and is

characterized by strong fluctuations of all the modelled fields, but the time averaged values have reached a steady-state. The
radial profiles of the mean convective turbulent flux
Cturb
r ¼ � N

1
r
@hU

B

	 

t;h;u

ð52Þ
and mean diffusive flux
Cdiff
r ¼ �hD?N@rNit;h;u ð53Þ
are also given and demonstrate that perpendicular transport is strongly dominated by turbulent processes, except in buffer
regions where the rise of diffusion coefficients stabilizes fluctuations.

An important verification of first principle based transport codes is the verification of balance laws. Matter balance over
an arbitrary volume of the simulation box is given in Fig. 11. But for a peak around 10% at the first relaxation, the relative
error remains lower than 5% with a typical value of 3%, which is a good accuracy compared with usual results.

Another verification with the code run in turbulent regime concerns linear growth rates. Fig. 12 shows a comparison of
the numerical and analytical growth rates of poloidal modes for the interchange instability, using a simplified version of the
model [16]:
@tN þ ½U;N
 ¼ D?Nr2
?N þ SN ð54Þ

@tr2
?Uþ U;r2

?U
h i

¼ �g
1
r
@h ln N þ D?Wr4

?U ð55Þ
Excellent agreement is found, which validates the advancement scheme and particularly the time-splitting we have
adopted.

4.4. Edge/SOL version in turbulent regime

The edge version of TOKAM-3D is the adapted choice for edge turbulence studies which do not require taking into account
the presence of the limiter since it is less time-consuming than the edge/SOL version. However, as soon as closed field lines
have to be addressed, it is necessary to use the edge/SOL version of the code.
(a) Poloidal section of the density in non-linear turbulent regime; (b) comparison of the radial flux profiles due to turbulent convective processes
fusion. The radial extension of buffer zones corresponds to the shaded areas; (c) temporal plot of the density at the bottom of the machine at
= (a � rmin)/2.



Fig. 11. Top: comparison between the temporal variation of the total amount of matter inside an arbitrary volume and the integral of incoming and
outgoing particle fluxes at its boundaries. Bottom: relative error.

Fig. 12. Comparison of the numerically obtained linear growth rate and the analytical one for the interchange instability.
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To finish our quick overview of the field of application of TOKAM-3D, let us consider a simulation run in turbulent regime
with the edge/SOL version:
Nr ¼ 80 NrSOL ¼ 50 Nh ¼ 260 N/ ¼ 60
rmin ¼ 50 a ¼ 100 R0=a ¼ 3:4Dlim ¼ p=26

gk ¼ 1� 10�4 D?N ¼ D?M ¼ D?W ¼ 6� 10�2

ð56Þ
The initially stable density gradient tends to steepen as the incoming particle source fuels the system, until first unstable
modes appear and trigger a transition towards turbulent regime. As shown in Fig. 13, density structures appear in the vicin-
ity of the LCFS and propagate outward in the SOL. Their amplitude is more important on the low field side than on the high
field side of the poloidal section which indicates an interchange-like mechanism. The clear influence of the q profile is visible
from the poloidal deformation the density structures exhibit as they travel outward in the SOL, particularly at the inner mid-
plane.

Some comments must be made concerning the obtention of the previous case. The first relaxation of the plasma generates
structures characterized by shorter gradient lengths and larger propagation velocities than those observed once the non-lin-
ear saturated regime is reached. This phase of the simulation is therefore particularly sensitive to numerical instabilities and
makes it necessary to run the code with time-steps 4–5 times smaller than the ones used in the rest of the simulation, which
strongly penalizes the execution time. The use of a shock capturing scheme for convection terms might solve this drawback
and is considered for future development of the code.



Fig. 13. Poloidal section of the density at the end of the first turbulent relaxation (logarithmic colour scale).
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5. Summary

A new edge transport and turbulence code, named TOKAM-3D, has been developed. This flux-driven code solves 3D fluid
drift equation in a global toroidal geometry without assuming any scale separation. It therefore allows analysing the inter-
action between large scale structures and the smallest turbulent eddies. Two versions of the code have been developed: the
first one, designated as the edge version, is able to treat exclusively closed field lines just inside the Last Closed Flux Surface
(LCFS); the second one, the so-called edge/SOL version, can address both closed and open field lines across the LCFS in limiter
configuration. Plasma–wall interaction appears when necessary through Bohm boundary conditions on the parallel velocity
and current. Time-splitting is used for the numerical advancement of both versions, but each numerical scheme has specific
features so as to be adapted to the modelled geometry.

A quick overview of the field of application of the code based on simple physical cases has also been presented. The code
can in particular be run in a continuum of transport regimes ranging from purely diffusive transport (it is then used as a
global transport code) to purely turbulent regime just by acting on input parameters. Several verifications have been per-
formed on these simulations. The choice of a non-aligned structured mesh does not prevent a right description of the parallel
dynamics and good accuracy is obtained for matter conservation or the growth rates of instabilities. Some limitations subsist
concerning the numerical stability of large transient convective events, which makes it demanding from the computation
time point of view to go through the first turbulent relaxation with the edge/SOL version. However, even though the physics
included in the code remains simpler than what is modelled in some other tools, the current versions of TOKAM-3D can al-
ready address a wide range of physical issues [46] and constitute a first step in a long term project for the modelling of the
edge plasma.

References

[1] A. Loarte et al, Nuclear Fusion 47 (2007) S203.
[2] B. LaBombard et al, Nuclear Fusion 44 (2004) 1047.
[3] C.P. Ritz et al, Physics Review Letters 62 (1989) 1844.
[4] G.A. Hallock, A.J. Wootton, R.L. Hickok, Physics Review Letters 59 (1987) 1301.
[5] T.T. Ribeiro, B. Scott, Plasma Physics and Controlled Fusion 47 (2005) 1657.
[6] B.D. Dudson et al, Plasma Physics and Controlled Fusion 50 (2008) 124012. 9pp.
[7] F. Wagner et al, Physics Review Letters 49 (1982) 1408.
[8] A. Leonard, Journal of Physics Conference Series 123 (2008) 012001.
[9] J. Rice et al, Nuclear Fusion 39 (1999) 1175.

[10] T. Rognlien, J. Milovich, M. Rensink, G. Porter, Journal of Nuclear Materials 196–198 (1992) 347.
[11] A. Chankin et al, Contribution to Plasma Physics 40 (2000) 288.
[12] B.J. Braams, P.J. Harbour, M.F.A. Harrison, E.S. Hotston, J.G. Morgan, Journal of Nuclear Materials 121 (1984) 75.
[13] A. Runov et al, Contribution to Plasma Physics 42 (1984) 169.
[14] V. Naulin, Journal of Nuclear Materials 363–365 (2007) 24.
[15] G.Y. Antar, G. Counsell, Y. Yu, B. Labombard, P. Devynck, Physics of Plasmas 10 (2003) 419.
[16] Y. Sarazin, P. Ghendrih, Physics of Plasmas 5 (1998) 4214.
[17] N. Bisai et al, Physics of Plasmas 11 (2004) 4018.
[18] O.E. Garcia, V. Naulin, A.H. Nielsen, J.J. Rasmussen, Physics of Plasmas 12 (2005) 062309.
[19] Y. Sarazin et al, Journal of Nuclear Materials 313–316 (2003) 796.
[20] R.E. Waltz et al, Physics of Plasmas 4 (1997) 2482.
[21] P. Beyer et al, Plasma Physics and Controlled Fusion 49 (2007) 507.
[22] T. Rognlien, M. Umansky, X. Xu, R. Cohen, L. LoDestro, Journal of Nuclear Materials 337–339 (2005) 327. PSI-16.



378 P. Tamain et al. / Journal of Computational Physics 229 (2010) 361–378
[23] X.Q. Xu, W.M. Nevins, R.H. Cohen, T.D. Rognlien, M.V. Umansky, Contributions to Plasma Physics 44 (2004) 105.
[24] Y. Nishimura, K. Borrass, D. Coster, B. Scott, Contributions to Plasma Physics 44 (2004) 194.
[25] X.Q. Xu, R.H. Cohen, T.D. Rognlien, J.R. Myra, Physics of Plasmas 7 (2000) 1951.
[26] X.Q. Xu, W.M. Nevins, R.H. Cohen, T.D. Rognlien, M.V. Umansky, Contribution to Plasma Physics 44 (2004) 105.
[27] X.Q. Xu, M.V. Umansky, B. Dudson, P.B. Snyder, Communication and Computer Physics 4 (2008) 949.
[28] B. Scott, in: The 41st Annual Meeting of the Division of Plasma Physics of the American Physical Society, vol. 7, 2000, p. 1845.
[29] R. Cohen et al, Nuclear Fusion 47 (2007) 612.
[30] J.R. Myra, D.A. D’Ippolito, X.Q. Xu, R.H. Cohen, Physics of Plasmas 7 (2000) 2290.
[31] S. Braginskii, in: M.A. Leontovich (Ed.), Transport Processes in a Plasma, Reviews of Plasma Physics, vol. 1, Consultant Bureau, New York, 1965.
[32] B. Scott, Low frequency fluid drift turbulence in magnetized plasmas, IPP 5/92, 2001.
[33] F.L. Hinton, C.W. Horton, Physics of Fluids 14 (1971) 116.
[34] P.C. Stangeby, The plasma boundary of magnetic fusion devices, IOP, 2000.
[35] R. Chodura, Physics of Fluids 25 (1982) 1628.
[36] R.H. Cohen, D. Ryutov, in: The 40th Annual Meeting of the Division of Plasma Physics of the American Physical Society, vol. 6, 1999, p. 1995.
[37] C. Negulescu, A. Nouri, P. Ghendrih, Y. Sarazin, Kinetic and Related Models 1 (2008) 619.
[38] X. Garbet, C. Fenzi, H. Capes, P. Devynck, G. Antar, Physics of Plasmas 6 (1999) 3955.
[39] W.H. Press, W.T. Vetterling, S.A. Teukolsky, B.P. Flannery, Numerical Recipes: The Art of Scientific Computing, Cambridge University Press, 2007.
[40] V. Grandgirard et al, Journal of Computational Physics 217 (2006) 395.
[41] E. Anderson et al., LAPACK Users’ Guide, third ed., Society for Industrial and Applied Mathematics, Philadelphia, PA, 1999.
[42] P. Amestoy, I. Duff, J.-Y. L’Excellent, Computational Methods in Applied Mechanics and Engineering 184 (2000) 501.
[43] P. Amestoy, I. Duff, J. Koster, J.-Y. L’Excellent, SIAM Journal of Matrix Analysis and Applications 23 (2001) 15.
[44] M. Frigo, S. Johnson, Proceedings of the IEEE 93 (2) (2005) 216.
[45] R. Leveque, Numerical Methods for Conservation Laws, Birkhaüser, 1992.
[46] P. Tamain et al, Journal of Nuclear Materials 390–391 (2009) 347.


	TOKAM-3D: A 3D fluid code for transport and turbulence in the edge plasma of Tokamaks
	Introduction
	Physical model
	3D full-torus geometry in limiter configuration
	Fluid approach
	3D fluid drift equations
	Boundary conditions
	Boundary conditions in the edge version
	Boundary conditions in the edge/SOL version


	Numerical method
	Edge/SOL version
	Semi-spectral discretization
	Time-splitting
	Perpendicular diffusion terms
	Parallel current terms
	Advection and source terms
	Boundary conditions around the limiter
	Parallelization

	Edge version
	Performance

	Verification and physical cases
	Parallel transport
	Edge/SOL version in laminar regime
	Edge version in turbulent regime
	Edge/SOL version in turbulent regime

	Summary
	References


